

ESA - MOST Dragon 2 Programme
2011 DRAGON 2 SYMPOSIUM

中国科技部-欧洲空间局合作"龙计划"二期"龙计划"二期2011年学术研讨会

Key Eco-Hydrological Parameters Retrieval and Land Data Assimilation System Development in a Typical Inland River Basin of China's Arid Region (ID. 5322)

Prof. Xin Li (李新) Cold and Arid Regions Environmental and Engineering Research Institute, CAS

Prof. Massimo Menenti

Delft University of Technology

Chinese Investigators

- Xin Li (CAREERI)
- Jian Wang (CAREERI)
- Jiemin Wang (CAREERI)
- Zeyong Hu (CAREERI)
- Ling Lu (CAREERI)
- Mingguo Ma (CAREERI)
- Weizhen Wang (CAREERI)
- Tao Che (CAREERI)
- Rui Jin (CAREERI)
- Qiang Liu (IRSA)

European Investigators

- Massimo Menenti (F, IT, NL)
- Jerome Colin (F)
- Robin Faivre (F)
- Zhongbo Su (NL)
- Li Jia (NL)
- Frank Veroustraete (B)
- Roderik Lindenbergh (NL)
- Vu Phan Hien (NL)
- Zhaoliang Li (F)
- Run Wang (G)
- Xin Tian (NL)

High resolution DTM to estimate glaciers mass balance

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

ALOS/PRISM DTM generation

ICESat track: L3H L3I L3I L3I L3K Photogrammetry: overlapping ALOS/PRISM image pairs + ICESat Ground Control Points.

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

- Using 2 from 3 images: problems with very dark and very bright features
- ALOS/PRISM DTM vs ICESat elevations:
 - mean difference: 20 m
 - Standard deviation: tenths of meter
- Future work: use 3 from 3 images + better (in situ) Ground Control Points

- SAR: records radar amplitude and phase 'independent of weather'
- Needed: two SAR images obtained at different time and location.
- Baseline: line between to satellite acquisition locations
- Two techniques to estimate a glacial flow velocity field from a SAR pair:
 - 1. Speckle tracking: Computer vision technique:estimate flow velocity field by matching features in amplitude image.

opographic Changes: SAR

 2. InSAR: Based on phase differences. Results in velocities in the LOS (Line of Sight)

Interferograms Rongbuk glacier

Date: 20071213 – 20080128 Bperp: 265.4m Btemp: 46 days Height amb: -241.6m

Date: 20080128 -20080314 Bperp: 185.4m Btemp: 46 days Height amb: -345.8m Date: 20071213 - 20080314 Bperp: 443.3m Btemp: 92 days Height amb: -144.6m

Steps:

- 1. 'Count' fringes to obtain displacements in meters
- 2. Convert to along glacier velocities
- 3. Convert to meter/year (now periods of 46 or 2 × 46 days)

Rongbuk velocity field

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

ICESAT / GLAS measurements of lake levels and mass balance

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作"龙计划"二期 "龙计划"二期2011年学术研讨会

Still big challenge:

direct monitoring of glacial elevation changes

Alternative:

 indirect monitoring: evaluate run-off using ICESat elevations

ICESat Lake Monitoring

ICESat tracks over Tibet

- Elevations from 18 campaigns between 2003 and 2009
- Tracks over lakes selected using MODIS lake mask

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作"龙计划"二期 "龙计划"二期2011年学术研讨会

157 lake level trends, 2003-2009

siiiiii.

Corresponding volume changes

(Area) x (change rate)

water volume change

Area averaged lake level increase over Tibet between 2003 and 2009:

0.20 [m/yr]

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

Validation: Selin and Qinhai Lake

Comparison with Radar Altimeter LEGOS

http://www.legos.obs-mip.fr/en/soa/hydrologie/hydroweb/Page_2.html Same trend variations, (vertical bias due to geoid issues)

Linking lakes to glaciers

- Lakes (checked) from MODIS mask
- Glaciers from (updated) CAREERI glacier mask
- Connecting rivers from a combi of
 - . ASTER GDEM channel detection, and,
 - . Landsat spectral river detection

Glacial flow velocity fields

Improved photogrammetric DEMS

3D heterogeneity of land surface and convective boundary layer

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

3-D heterogeneity of water flux

卫星

The Heihe Watershed Allied Telemetry Experimental Research

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

Large Eddy Simulation of water vapour concentration in the Convective Boundary Layer over a domain of 10 km x 10 km at a horizontal spatial resolution of 25 m: left) surface; right) 3200 m (courtesy of Siebersma, KNMI).

11

HeiHe Basin

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

EXAMPLE Land cover, surface wetness and temperature

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

EXAMPLE C Land Surface Temperature: AATSR C esa

AATSR LST (K)

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

Air temperature at height of Planetary Boundary Layer

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作"龙计划"二期 "龙计划"二期2011年学术研讨会

CFD modeling of wind field

Wind flow (at 2m) over vegetation height map from LIDAR measurements

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

Mapping aerodynamic roughness

Vegetation height

2m wind speed

z0 from profile inversion

esa

Colin and Faivre, 2010; Dragon 2 Mid Term Report project 5322

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

Dual source model

Vegetation and soil component temperatures are used directly in the dual-source model parameterization scheme to calculate component and total heat fluxes (*Jia*, 2004).

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

Fraction vegetation cover is observed by the satellite when looking at the land surface at the large off-nadir angle

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

Higher surface temperature is observed at nadir view than at off-nadir view indicating anisotropy of the thermal emittance of the land surface.

esa

Clear separation between soil and vegetation component temperatures.

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作"龙计划"二期 "龙计划"二期2011年学术研讨会

AATSR: 1 km x 1 km

Large Aperture Scintillometry is the only experimental technique for the validation of heat fluxes at the AATSR spatial resolution

esa

ESA - MOST Dragon 2 Programme | **2011 DRAGON 2 SYMPOSIUM** 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

AATSR: Validation

See Poster Jia et al

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会 20 - 24 June 2011 | Prague | Czech Republic 捷克 布拉格 2011年6月20-24日

esa

Time series analysis and gap filling LST records: FY 2

111111 - Al-

Hamid Reza Ghafarian TU Delft

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

Frequency of gaps

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

HANTS: setting parameters

	rec_1	rec_2	rec_3	rec_4	rec_5
Number of images	744	744	744	744	744
Width	801	801	801	801	801
Height	601	601	601	601	601
Valid data range	260-330	260-330	260-310	260-320	260-330
Length of period	744	744	744	744	744
Number Of	8	13	13	13	13
Frequencies (NOF)					
Periods	744-372-248-186-	744-372-248-186-148-	372-248-186-148-124-	744-372-248-186-148-	744-372-248-186-148-
	148-124-106-93	124-106-93-48-24-12-8-6	106-93-48-24-12-8-6-3	124-106-93-48-24-12-8-6	124-106-93-48-24-12-8-6
Direction of outliers	low	low	low	low	low
Fit Error Tolerance	3	3	2	3	3
(FET)					
Degree of	20	50	25	50	50
OverDeterminedness					
(DOD)					
Delta	0.1	0.1	0.1	0.2	0.5
Scaling factor	1	1	1	1	1

Results

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

Comments

Satellite data provide the 3D information required by hydrological and atmospheric models

Hydrological processes in remote data-poor areas can be observed building upon the complementarity of observing systems

Evaporation: focus on merging observations from multiple sources (sensors) and high resolution land – atmosphere models

