

ESA - MOST Dragon 2 Programme
2011 DRAGON 2 SYMPOSIUM

中国科技部-欧洲空间局合作"龙计划"二期"龙计划"二期2011年学术研讨会

Measurement of Greenhouse Gases from Satellite: Challenges and Some Applications in China

Wenguang Bai, Xingying Zhang, Peng Zhang

National Satellite Meteorological Center,

China Meteorological Administration

20 - 24 June 2011 | Prague | Czech Republic

捷克 布拉格 2011年6月20-24日

Green house gas ground base measurements

□ Satellites are carrying out pioneering studies on global carbon budgets.

1999

MOPITT on Terra

AIRS on AQUA

2002

TES on AURA

2006

IASI on METOP-A

Orbiting Carbon Observatory, OCO (NASA, 2009)

- Three near infrared grating spectrometers
- Spectral resolution ~ 0.3 cm⁻¹
- \succ Measuring CO₂ only at high (1 km) spatial resolution

Greenhouse Gases Observing Satellite, GOSAT (JAXA, Japan, 2009)

- Fourier Transform Spectrometer
- Moderate spatial resolution ~ 10 km
- Single pixel detector

ESA - MOST Dragon 2 Programme | 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

20 - 24 June 2011 | Prays czech Republic 捷克 布拉格 2011年6月20-24日

Outline

- Study on spatiotemporal variation of Mid-upper tropospheric methane over China by Satellite observations
- CO₂ temporal and spatial distribution characteristics over China based on satellite data
- \succ Challenges of remote sensing CO₂ from satellite

1. Study on spatiotemporal variation of Mid-upper tropospheric methane over China by Satellite observations

- Validation of AIRS CH₄ Measurements
- Spatial distribution of CH₄ over China
- Seasonal cycle of CH₄ over China
- Long-term CH₄ trends over China
- Conclusions

ESA - MOST Dragon 2 Programme 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

NSMC FTIR measurement campaigns:

- Beamsplitter : KBr (600-5000 cm-1) CaF2 (1000 -12000cm-1) , (in using)
- Detector: MCT (600-6000 cm-1), (in using)

InSb (1800-12000 cm-1)

Filters:
 Filter1 (2000-3000 cm-1)
 Filter2 (2700-4500 cm-1)

Use two filters to get our spectrum from 2000 to 4500 cm-1

ESA - MOST Dragon 2 Programme | **2011 DRAGON 2 SYMPOSIUM** 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会 20 - 24 June 2011 | Prague | Czech Republic 捷克 布拉格 2011年6月20-24日

Molecule	Micro-windows (cm-1)	Spectrum resolution (cm-1)	Interfering species	DOF
CH ₄	2613.7-2615.4 2650.6-2651.3 2835.5-2835.8 2903.6-2904.06 2921.0-2921.6	0.01	H2O、CO2、NO2	1.6
N ₂ O	2481.3-2482.6 2526.4-2528.2 2537.85-2538.8 2540.1-2540.7	0.01	H2O、CO2、CH4	2.9
СО	2069.4-2069.9 2140.4-2141.4 2153.2-2160.0	0.01	H2O、CO2、N2O、 OCS	2.0
CO ₂	2620.55-2621.1 2626.40-2626.85 2627.1-2627.6 2629.27-2629.95	0.01	H2O、CH4	1
03	3041.48-3041.94 3042.93-3043.24 3044.25-3044.62 3045.26-3045.55	0.01	Н2О、СН4	1.69

Proffit 9.5 from KIT/German using to do the retrieval.

ESA - MOST Dragon 2 Programme | 2011 DRAGON 2 SYMPOSIUM 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会

AIRS CH₄ product validation. 1882

The seasonal cycle of AIRS is similar to the Waliguan in-situ measurements. And the CH₄ concentration decreased with an increasing of altitude.

The AIRS product at three different heights is very close to the FTIR measurements. The bias is 0.2~1.1%, which is similar to aircraft validation results (0.5~1.6%).

Spatial distribution of CH₄ over China

middle > upper > top of troposphere

middle of troposphere: highest concentration exist in the east, northeast, and south of China; low in the west; coast than over ocean;

up and top troposphere: highest CH4 in the inland; low exist in the southeast China.

407.25hpa

Spatial distribution of CH4 over China

306.75 hPa

Top: lowest CH4 concentration occur in the southern of China; Upper: well mixing in all region; Middle: low center located over western.

Seasonal cycle of CH_4 over China

Two peaks apparent in summer and winter over eastern, northeast, and northwestern China.

One peak occurs over southern and western of China.

Long-term CH₄ trends over China

Long-term CH₄ trends over China

Table 1

Area	Po	osition	206.25 hPa	306.75 hPa	406.25 hPa	
	Lat	Lon	(ppbv)	(ppbv)	(ppbv)	
China	22-42°N	90-120°E	12.4	11.3	8.5	
America	33-48°N	124-75°₩	9.1	8.7	6.7	
Canada	50-65°N	130-90°W	б.б	7.4	7.0	
Alaska	60-70°N	163-142°W	4.9	5.5	5.6	
Russian	55-70°N	45-135°E	4.0	5.4	7.0	
Granada	65-80°N	50-20°W	3.8	5.5	5.7	
Australia	30-20°S	120-150°E	-4.9	-2.1	1.2	

Significant increase found in China than in other areas;

Slightly downward trend in Australia found;

Table 2

Altitude	2006	2007	2008	Growth rate (ppbv/year)
206.25 hPa	1760.14	1760.81	1775.77	4.9
306.75 hPa	1785.04	1786.55	1798.77	6.9
407.25 hPa	1808.60	1810.77	1818.37	7.8
Mt. Waliguan	1832.67	1841.57	1846.22	6.8

The annual growth rate is 5~8 ppbv, similar to Waliguan measurement (6.8ppbv).

Conclusion

- 1) Validation with ground-based measurements demonstrated that the retrieval RMS errors of AIRS CH_4 are mostly less than 1.5%.
- 2) Methane mixing ratios decrease with an increase in height because of the effects of human activities and natural emission of CH_4 from the boundary layer.
- 3) Obvious bimodal seasonal variations in CH_4 concentrations exist in most areas of China, with the highest values in summer and the second highest in winter. Only the summer peak occurs in the western and southern areas of China.
- 4) The mixing ratio of MUT-CH₄ is relatively stable before 2007 over several main regions of the northern hemisphere (including China). Significant growth is found after 2007, with China having the highest growth rate.

2. CO₂ temporal and spatial distribution characteristics over China based on satellite data

- AIRS CO₂ product Ground-based validation
- Global Troposphere CO₂ distribution Character
- Spatial and temporal distribution of troposphere CO₂ over China
- Seasonal variation in Mid-troposphere CO₂
- Conclusions

WDCGG http://gaw.kishou.go.jp/wdcgg/

ESA - MOST Dragon 2 Programme | **2011 DRAGON 2 SYMPOSIUM** 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会 20 - 24 June 2011 | Prague | Czech Republic 捷克 布拉格 2011年6月20-24日

AIRS CO2 product Ground-based validation

	Ground-base Station		Annual growth rate (ppmv/a)		Mean (ppmv)			Monthly average		
	lat	lon	h(m)	Ground	Satellite	Ground	Satellite	Average deviation (ppmv)	standard deviation (ppmv)	R
Assekrem	23.27	5.63	2710	1.995	2.076	380.734	379.822	0.912	1.609	0.922
Mauna Loa	19.54	-155.58	3397	1.992	2.034	380.786	379.286	1.500	1.598	0.915
Niwot Ridge	40.05	-105.59	3523	2.018	2.149	381.293	380.811	0.482	2.614	0.806
Plateau Rosa	45.93	7.70	3480	1.935	2.040	380.729	381.007	-0.278	2.976	0.771
Waliguan	36.28	100.9	3810	1.977	2.100	381.209	380.730	0.479	2.692	0.806
Average				1.983	2.080	380.950	380.331	0.619	2.298	-

+60

-90

+30°

0°

-30[°]

385

380

375 370

365

360

+30

0°

-30

AIRS CO2 data: http://airs.jpl.nasa.gov/AIRS_CO2_Data/

Global Troposphere CO₂ distribution Character

Northern Hemisphere higher than Southern Hemisphere;

Highest occurring in the northern China, Europe, center US; southern Canada; nearby sea Alaska; form a belt.

Lowest belt is in the Atlantic region.

	Area		Mean	Monthly average	Annual growth rate	Seasonal fluctuation (ppmv)	
	Longitude	Latitude	(ppmv)	(ppmv)	(ppmv/a)		
America	122.5–72.5° W	33–48° N	381.00	3.76	2.11	3.70	
Canada	130–90° W	50–65° N	381.04	4.21	2.26	7.72	
China	90–120° E	22–42° N	380.36	3.75	2.09	4.06	
Russian	45–135° E	56–70° N	380.04	4.76	2.32	10.99	
Australia	120–150° E	30–20° S	379.83	3.71	2.09	2.87	
Europe	0-30° E	40–60° N	381.00	3.82	2.10	5.02	
India	72.5–85° E	14–30° N	379.70	3.63	2.03	2.94	

Spatial and temporal distribution of troposphere CO₂ over China

The highest CO_2 level occurred in four regions (35~45N): Northeast Plain; Inner Mongolia; Taklimakan desert; Tarim Basin.

The Yunnan region ($20 \sim 30N$) is low in CO₂ concentration.

An overall increasing trend from 2003 to 2008 in all different areas, the annual growth rate are 2.215, 2.160, 2.092 ppmv/a, little higher than Waliguan.

Seasonal variation in Mid-troposphere CO₂

- 1) The AIRS mid-troposphere CO_2 data show consistency with ground-based observation and measurement data from aircraft. The monthly average bias is less than 3 ppmv, which validates the ability of the AIRS product to capture seasonal CO_2 concentration change precisely.
- 2) CO_2 concentration is higher in the Northern Hemisphere than in the Southern Hemisphere. The CO_2 concentration annual growth rate for China is about 2 ppmv, which is similar to the United States, Europe, Australia and India, but slightly lower than Canada and Russia. This rate still has some uncertainty because of limited satellite data.
- 3) Mid-troposphere CO_2 is higher in the north than in the south over China, and significant enhancements are seen at four centers in the range 35° N-45° N. The Yunnan area is the lowest CO_2 concentration center.
- 4) A rise in Mid-troposphere CO₂ occurs over China in the spring, when the Northern Hemisphere Greenup begins, and reaches a minimum in autumn when the quantity of biomass undergoing photosynthesis is the greatest.

3. Challenges of remote sensing CO₂ from satellite

- Spectrum Band Used to Remote Sensing CO₂
- Instrument Spectral Resolution
- Radiance Detection Sensitivity
- Interference Factors to the CO₂ Retrieval
- Surface Reflectivity Difference

SCIATRAN: http://www.iup.uni-bremen.de/sciatran

(Wavelength nm)

(Wavelength nm)

Interference Factors to the CO₂ Retrieval

Surface Reflectivity Difference

Sea Water

Fine Snow

Conclusion

- 1) Need satellite instrument with high spectrum resolution and S/N.
- 2) How to select bands which are sensitive to all altitude of CO_2 profile?
- 3) How to remove other interfering factors effect to the CO_2 retrieval?
- 4) How to decide the satellite measurement pixel surface type?
- 5)

It is challenging to get 2ppmv of CO₂ retrieval accuracy from Satellite!

Thanks very much for your attention!

ESA - MOST Dragon 2 Programme | **2011 DRAGON 2 SYMPOSIUM** 中国科技部-欧洲空间局合作 "龙计划"二期 "龙计划"二期2011年学术研讨会 20 - 24 June 2011 | Prague | Czech Republic 捷克 布拉格 2011年6月20-24日